Affiliation:
1. Department of Mechanical Engineering, University of Wyoming, Laramie, Wyoming 82071, USA
Abstract
A combination of high strength and high ductility has been observed in multi-principal element alloys due to twin formation attributed to low stacking fault energy (SFE). In the pursuit of low SFE alloys, a key bottleneck is the lack of understanding of the composition–SFE correlations that would guide tailoring SFE via alloy composition. Using density functional theory (DFT), we show that dopant radius, which have been postulated as a key descriptor for SFE in dilute alloys, does not fully explain SFE trends across different host metals. Instead, charge density is a much more central descriptor. It allows us to (1) explain contrasting SFE trends in Ni and Cu host metals due to various dopants in dilute concentrations, (2) explain the large SFE variations observed in the literature even within a given alloy composition due to the nearest neighbor environments in “model” concentrated alloys, and (3) develop a machine learning model that can be used to predict SFEs in multi-elemental alloys. This model opens a possibility to use charge density as a descriptor for predicting SFE in alloys.
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献