Anomalous rheological aging of a model thermoreversible colloidal gel following a thermal quench

Author:

Suman Khushboo1ORCID,Wagner Norman J.1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA

Abstract

We investigate the aging behavior in a well-studied model system comprised of a colloidal suspension of thermoreversible adhesive hard spheres (AHS) but thermally quenched below the gel transition to much larger depths than previously studied. The aging behavior in the model AHS system is monitored by small amplitude oscillatory shear rheology measurements conducted while rapidly quenching from the liquid state at 40 °C to a temperature below the gel temperature, and new, anomalous aging behaviors are observed. Shallow quenches lead to monotonic development of the elastic modulus with time, consistent with prior reports for the development of a homogeneous gel [Gordon et al., J. Rheol. 61, 23–34 (2017)]. However, for deeper quenches, a unique and new phenomenon is reported, namely, after an initial rise in the modulus, a reproducible drop in the modulus is observed, followed by a plateau in the modulus value. This drop can be gradual or sudden and the extent of the drop depends on the quench depth. After this drop in the modulus, AHS gel evolves toward a quench-path independent state over the experimental timescale. These effects of the extent of quenching on aging behavior are hypothesized to be a consequence of quenching into different underlying thermodynamic states of colloidal gels and the possible influence of the adhesive glass dynamical arrest for the deepest quenches. The research connects homogeneous gelation with heterogeneous gel formation due to phase separation and shows that the extent of quench can be used as an independent parameter to govern the rheological response of the arrested gel.

Funder

U.S. Department of Commerce

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3