Affiliation:
1. Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
Abstract
In many fluid experiments, we can only obtain low-spatial high-temporal resolution flow images and high-spatial low-temporal resolution flow images due to the limitation of high-speed imaging systems. To solve this problem, we proposed a degradation and super-resolution attention model (D-SRA) using unsupervised machine learning to super-resolution reconstruct high resolution (HR) time-resolved fluid images from coarse data. Unlike the prior research to increase the resolution of coarse data artificially generated by simple bilinear down-sampling, our model that consists of a degradation neural network and a super-resolution neural network aims to learn the mappings between experimental low-resolution data and corresponding HR data. What is more, channel and spatial attention modules are also adopted in D-SRA to facilitate the restoration of abundant and critical details of flow fields. The proposed model is validated by two high-speed schlieren experiments of under-expanded impinging supersonic jets. The comprehensive capability of D-SRA is statistically analyzed based on the synthetic unpaired schlieren images. The spatial-resolution of coarse images can be successfully augmented by [Formula: see text] times and [Formula: see text] times with most physical details recovered perfectly, which outperforms the existing method. The D-SRA also exhibits considerable generalization and robustness against unknown-degenerated schlieren images. Moreover, the practicability of the proposed method is also further explored on real unpaired jets schlieren images. It is convincingly demonstrated that the present study successfully surpasses the performance limitations of high-speed cameras and has significant applications in various fluid experiments to obtain flow images with high spatial and temporal resolution.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
National Numerical Wind Tunnel Project of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献