Ensemble flow reconstruction in the atmospheric boundary layer from spatially limited measurements through latent diffusion models

Author:

Rybchuk Alex1ORCID,Hassanaly Malik1ORCID,Hamilton Nicholas1ORCID,Doubrawa Paula1ORCID,Fulton Mitchell J.2ORCID,Martínez-Tossas Luis A.1ORCID

Affiliation:

1. National Wind Technology Center, National Renewable Energy Laboratory 1 , Golden, Colorado 80401, USA

2. Department of Mechanical Engineering, University of Colorado Boulder 2 , Boulder, Colorado 80309-0552, USA

Abstract

Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measurements using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent, three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one observation. These samples successfully serve as initial conditions for a large-eddy simulation code. We find that diffusion models show promise and potential for other applications for other turbulent flow reconstruction problems.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3