Statistical data analysis of x-ray spectroscopy data enabled by neural network accelerated Bayesian inference

Author:

MacDonald M. J.1ORCID,Hammel B. A.1ORCID,Bachmann B.1ORCID,Bitter M.2ORCID,Efthimion P.2,Gaffney J. A.1ORCID,Gao L.2ORCID,Hammel B. D.3ORCID,Hill K. W.2ORCID,Kraus B. F.2ORCID,MacPhee A. G.1ORCID,Peterson L.1ORCID,Schneider M. B.1ORCID,Scott H. A.1ORCID,Thorn D. B.1ORCID,Yeamans C. B.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory 1 , Livermore, California 94550, USA

2. Princeton Plasma Physics Laboratory, Princeton University 2 , Princeton, New Jersey 08543, USA

3. SambaNova Systems 3 , Palo Alto, California 94303, USA

Abstract

Bayesian inference applied to x-ray spectroscopy data analysis enables uncertainty quantification necessary to rigorously test theoretical models. However, when comparing to data, detailed atomic physics and radiation transfer calculations of x-ray emission from non-uniform plasma conditions are typically too slow to be performed in line with statistical sampling methods, such as Markov Chain Monte Carlo sampling. Furthermore, differences in transition energies and x-ray opacities often make direct comparisons between simulated and measured spectra unreliable. We present a spectral decomposition method that allows for corrections to line positions and bound–bound opacities to best fit experimental data, with the goal of providing quantitative feedback to improve the underlying theoretical models and guide future experiments. In this work, we use a neural network (NN) surrogate model to replace spectral calculations of isobaric hot-spots created in Kr-doped implosions at the National Ignition Facility. The NN was trained on calculations of x-ray spectra using an isobaric hot-spot model post-processed with Cretin, a multi-species atomic kinetics and radiation code. The speedup provided by the NN model to generate x-ray emission spectra enables statistical analysis of parameterized models with sufficient detail to accurately represent the physical system and extract the plasma parameters of interest.

Funder

Lawrence Livermore National Laboratory

Laboratory Directed Research and Development

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3