Machine learning and Bayesian inference in nuclear fusion research: an overview

Author:

Pavone AORCID,Merlo AORCID,Kwak SORCID,Svensson J

Abstract

Abstract This article reviews applications of Bayesian inference and machine learning (ML) in nuclear fusion research. Current and next-generation nuclear fusion experiments require analysis and modelling efforts that integrate different models consistently and exploit information found across heterogeneous data sources in an efficient manner. Model-based Bayesian inference provides a framework well suited for the interpretation of observed data given physics and probabilistic assumptions, also for very complex systems, thanks to its rigorous and straightforward treatment of uncertainties and modelling hypothesis. On the other hand, ML, in particular neural networks and deep learning models, are based on black-box statistical models and allow the handling of large volumes of data and computation very efficiently. For this reason, approaches which make use of ML and Bayesian inference separately and also in conjunction are of particular interest for today’s experiments and are the main topic of this review. This article also presents an approach where physics-based Bayesian inference and black-box ML play along, mitigating each other’s drawbacks: the former is made more efficient, the latter more interpretable.

Funder

Euratom Research and Training Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3