Three-dimensional particle image velocimetry measurement through three-dimensional U-Net neural network

Author:

Cao LixiaORCID,Hossain Md. Moinul1ORCID,Li JianORCID,Xu ChuanlongORCID

Affiliation:

1. School of Engineering, University of Kent 2 , Canterbury, Kent CT2 7NT, United Kingdom

Abstract

This paper proposes a light field (LF) three-dimensional (3D) particle image velocimetry (PIV) method based on a digital refocused algorithm and 3D U-Net neural network for 3D three-component (3D-3C) velocity measurement. A digital refocused algorithm is used to generate a stack of LF-refocused images of tracer particles for establishing the 3D U-Net. The 3D U-Net is then used for the 3D particle field reconstruction. Based on a pair of 3D particle fields, the 3D-3C velocity field is obtained through a 3D cross correlation algorithm. Numerical simulations and experiments are conducted to analyze the accuracy and efficiency of the proposed method. The simulation results show that the elongation along the depth direction and the efficiency of the 3D particle field reconstruction are improved by the 3D U-Net. The 3D U-Net also provides a better correlation coefficient. The experimental results show that the reconstruction time of the proposed method is ∼220 s which is 10 times faster than the LF tomographic PIV. This further demonstrates that the proposed method improves the reconstruction efficiency without affecting the accuracy of velocity measurement.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference42 articles.

1. Volumetric particle image velocimetry with a single plenoptic camera;Meas. Sci. Technol.,2015

2. Reducing plenoptic camera artifacts;Comput. Graph. Forum,2010

3. Three-dimensional particle image velocimetry using a plenoptic camera,2012

4. Recent development of volumetric PIV with a plenoptic camera,2013

5. Characteristics of tomographic reconstruction of light-field Tomo-PIV;Opt. Commun.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3