Volumetric reconstruction of flow particles through light field particle image velocimetry and deep neural network

Author:

Zhu XiaoyuORCID,Fu Mengxi,Xu ChuanlongORCID,Hossain Md. Moinul1ORCID,Khoo Boo Cheong2ORCID

Affiliation:

1. School of Engineering, University of Kent 2 , Canterbury, Kent CT2 7NT, United Kingdom

2. Department of Mechanical Engineering, National University of Singapore 3 , Singapore 119260, Singapore

Abstract

Tomographic reconstruction of three-dimensional (3D) tracer particle distributions through light field particle image velocimetry (LF-PIV) faces challenges in low reconstruction resolution owing to the elongation effect and extensive computational cost incurred by the iterative process. To resolve these challenges, this study proposes a deep neural network-based volumetric reconstruction approach to alleviate the reconstruction elongation and enhance the reconstruction efficiency. A tailored deep learning model (namely, LF-DNN) incorporating residual neural network architecture and a novel hybrid loss function is established to reconstruct the particle distributions through LF images. The parallax information of the flow field decoded from the raw LF data is leveraged as the input features of the network model. Comparative studies between the proposed method and the traditional tomographic reconstruction algorithms (multiplicative algebraic reconstruction technique, MART and pre-recognition MART, PR-MART) are performed through synthetic datasets. Experiments on a cylinder wake flow are further conducted to validate the performance of the proposed LF-DNN. The results indicate that the LF-DNN outperforms MART and PR-MART in terms of the reconstruction quality, mitigation of elongation effect, and noise resilience. The LF-DNN also improves the reconstruction efficiency which is 9.6 and 7.1 times higher than the MART and PR-MART, respectively. The relative error of the cylinder wake flow achieved by the LF-DNN is 2% lower than the MART. It suggests that the LF-DNN can facilitate accurate volumetric particle reconstruction and hence the three-dimensional flow measurement by single camera-based LF-PIV.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3