3D Lagrangian Particle Tracking in Fluid Mechanics

Author:

Schröder Andreas12,Schanz Daniel1

Affiliation:

1. Institute of Aerodynamics and Flow Technology, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Göttingen, Germany;

2. Institute for Traffic Engineering, Brandenburgisch Technische Universität (BTU) Cottbus–Senftenberg, Cottbus, Germany

Abstract

In the past few decades various particle image–based volumetric flow measurement techniques have been developed that have demonstrated their potential in accessing unsteady flow properties quantitatively in various experimental applications in fluid mechanics. In this review, we focus on physical properties and circumstances of 3D particle–based measurements and what knowledge can be used for advancing reconstruction accuracy and spatial and temporal resolution, as well as completeness. The natural candidate for our focus is 3D Lagrangian particle tracking (LPT), which allows for position, velocity, and acceleration to be determined alongside a large number of individual particle tracks in the investigated volume. The advent of the dense 3D LPT technique Shake-The-Box in the past decade has opened further possibilities for characterizing unsteady flows by delivering input data for powerful data assimilation techniques that use Navier–Stokes constraints. As a result, high-resolution Lagrangian and Eulerian data can be obtained, including long particle trajectories embedded in time-resolved 3D velocity and pressure fields.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3