Direct numerical simulation of shock wave/turbulent boundary layer interaction in a swept compression ramp at Mach 6

Author:

Zhang Ji12ORCID,Guo Tongbiao1ORCID,Dang Guanlin12ORCID,Li Xinliang12ORCID

Affiliation:

1. LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Swept compression ramps widely exist in supersonic/hypersonic vehicles and have become a typical standard model for studying three-dimensional (3D) shock wave/turbulent boundary layer interactions (STBLIs). In this paper, we conduct a direct numerical simulation of swept compression ramp STBLI with a 34° compression angle and a 45° sweep angle at Mach 6 using a heterogeneous parallel finite difference solver. Benefitting from the powerful computing performance of the graphics processing unit, the computational grid number exceeds 5 × 106 with the spatiotemporal evolution data of hypersonic 3D STBLI obtained. The results show that the flow of the hypersonic swept compression ramp follows the quasi-conical symmetry. A supersonic crossflow with helical motion appears in the interaction region, and its velocity increases along the spanwise direction. Fluids from the high-energy-density region pass through the bow shock at the head of the main shock and crash into the wall downstream of the reattachment, resulting in the peaks in skin friction and heat flux. The peak friction and heating increase along the spanwise direction because of the spanwise variation in the shock wave inclination. In the interaction region, the unsteadiness is dominated by the mid-frequency motion, whereas the low-frequency large-scale motion is nearly absent. Two reasons for the lack of low-frequency unsteadiness are given: (1) The separation shock is significantly weaker than the reattachment shock and main shock; and (2) because of the supersonic crossflow, the perturbations propagating at the sound speed are not self-sustaining but flow along the r-direction and toward the spanwise boundary.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

GHfund A

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3