Coexistence of different mechanisms underlying the dynamics of supersonic turbulent flow over a compression ramp

Author:

Fan JianhuiORCID,Uy Ken Chun KitORCID,Hao JiaaoORCID,Wen Chih-YungORCID

Abstract

Supersonic turbulent flow over a compression ramp is studied using wall-resolved large eddy simulation with a freestream Mach number of 2.95 and a Reynolds number [based on δ0: the thickness of incoming turbulent boundary layer (TBL)] of 63 560. The unsteady dynamics of the present shock wave/turbulent boundary layer interaction (STBLI) flow are investigated by using dynamic mode decomposition techniques, linear and nonlinear disambiguation optimization, local stability analysis (LSA), and global stability analysis (GSA). By analyzing the dynamic system for the STBLI flow, three dynamically important modes with characteristic spanwise wavelengths of 2δ0, 3δ0, and 6δ0 are captured. The 2δ0 mode approximates the spanwise scale of the Görtler-like vortices and Görtler mode of LSA, suggesting the presence of Görtler instability, which is believed to be related to the unsteady motion of streaks downstream of reattachment in the flow. The features of the 3δ0 mode are also observed in large-scale motions of the incoming TBL, implying the existence of a convective mechanism that is excited and maintained by such motions. Additionally, the GSA results show the most unstable mode features a spanwise wavelength of around 6δ0, indicating the existence of global instability that is believed to be related to the oscillating motion of separation shock. The coexistence of these three mechanisms is confirmed. Discussions on the above findings provide an interpretation for low-frequency unsteadiness that the unsteadiness of surface streaks results from the combined effects of the Görtler instability near flow reattachment and the convection of large-scale motions in the incoming boundary layer, while the low-frequency shock motion may be related to a global mode driven by upstream disturbances.

Funder

Hong Kong Research Grants Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3