Tutorial: Metalorganic chemical vapor deposition of β -Ga2O3 thin films, alloys, and heterostructures

Author:

Bhuiyan A. F. M. Anhar Uddin1ORCID,Feng Zixuan1,Meng Lingyu1ORCID,Zhao Hongping12ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, The Ohio State University 1 , Columbus, Ohio 43210, USA

2. Department of Materials Science and Engineering, The Ohio State University 2 , Columbus, Ohio 43210, USA

Abstract

β-phase gallium oxide (Ga2O3) is an emerging ultrawide bandgap (UWBG) semiconductor with a bandgap energy of ∼ 4.8 eV and a predicted high critical electric field strength of ∼8 MV/cm, enabling promising applications in next generation high power electronics and deep ultraviolet optoelectronics. The advantages of Ga2O3 also stem from its availability of single crystal bulk native substrates synthesized from melt, and its well-controllable n-type doping from both bulk growth and thin film epitaxy. Among several thin film growth methods, metalorganic chemical vapor deposition (MOCVD) has been demonstrated as an enabling technology for developing high-quality epitaxy of Ga2O3 thin films, (AlxGa1−x)2O3 alloys, and heterostructures along various crystal orientations and with different phases. This tutorial summarizes the recent progresses in the epitaxial growth of β-Ga2O3 thin films via different growth methods, with a focus on the growth of Ga2O3 and its compositional alloys by MOCVD. The challenges for the epitaxial development of β-Ga2O3 are discussed, along with the opportunities of future works to enhance the state-of-the-art device performance based on this emerging UWBG semiconductor material system.

Funder

Air Force Office of Scientific Research

NSF

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3