Nanoelectromechanical systems from two-dimensional materials

Author:

Ferrari Paolo F.1ORCID,Kim SunPhil1ORCID,van der Zande Arend M.12ORCID

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign 1 , Urbana, Illinois 61801, USA

2. Materials Research Laboratory, University of Illinois at Urbana-Champaign 2 , Urbana, Illinois 61801, USA

Abstract

Micro- and nanoelectromechanical systems have numerous applications in sensing and signal transduction. Many properties benefit from reducing the system size to the nanoscale, such as increased responsivity, enhanced tunability, lower power consumption, and higher spatial density. Two-dimensional (2D) materials represent the ultimate limit of thickness, offering unprecedented new capabilities due to their natural nanoscale dimensions, high stability, high mechanical strength, and easy electronic integration. Here, we review the primary design principles, properties, applications, opportunities, and challenges of 2D materials as the building blocks of NEMS (2D NEMS) with a focus on nanomechanical resonators. First, we review the techniques used to design, fabricate, and transduce the motion of 2D NEMS. Then, we describe the dynamic behavior of 2D NEMS including vibrational eigenmodes, frequency, nonlinear behavior, and dissipation. We highlight the crucial features of 2D NEMS that enhance or expand the functionalities found in conventional NEMS, such as high tunability and rich nonlinear dynamics. Next, we overview the demonstrated applications of 2D NEMS as sensors and actuators, comparing their performance metrics to those of commercial MEMS. Finally, we provide a perspective on the future directions of 2D NEMS, such as hybrid quantum systems, integration of active 2D layers into nanomechanical devices, and low-friction interfaces in micromachines.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3