Extended preconditioning on soft matrices directs human mesenchymal stem cell fate via YAP transcriptional activity and chromatin organization

Author:

Ma Yufei1ORCID,Zhang Xu1,Tang Shaoxin1,Xue Li2,Wang Jing1,Zhang Xiaohui2ORCID

Affiliation:

1. Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University 1 , Xi'an 710049, People's Republic of China

2. The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University 2 , Xi'an 710049, People's Republic of China

Abstract

Dynamic extracellular matrix (ECM) mechanics plays a crucial role in tissue development and disease progression through regulation of stem cell behavior, differentiation, and fate determination. Periodontitis is a typical case characterized by decreased ECM stiffness within diseased periodontal tissues as well as with irreversible loss of osteogenesis capacity of periodontal tissue-derived human periodontal tissue-derived MSCs (hMSCs) even returning back to a physiological mechanical microenvironment. We hypothesized that the hMSCs extendedly residing in the soft ECM of diseased periodontal tissues may memorize the mechanical information and have further effect on ultimate cell fate besides the current mechanical microenvironment. Using a soft priming and subsequent stiff culture system based on collagen-modified polydimethylsiloxane substrates, we were able to discover that extended preconditioning on soft matrices (e.g., 7 days of exposure) led to approximately one-third decrease in cell spreading, two-third decrease in osteogenic markers (e.g., RUNX2 and OPN) of hMSCs, and one-thirteenth decrease in the production of mineralized nodules. The significant loss of osteogenic ability may attribute to the long-term residing of hMSCs in diseased periodontal tissue featured with reduced stiffness. This is associated with the regulation of transcriptional activity through alterations of subcellular localization of yes-associated protein and nuclear feature-mediated chromatin organization. Collectively, we reconstructed phenomena of irreversible loss of hMSC osteogenesis capacity in diseased periodontal tissues in our system and revealed the critical effect of preconditioning duration on soft matrices as well as the potential mechanisms in determining ultimate hMSC fate.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Young Elite Scientist Sponsorship Program by CAST

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Biomedical Engineering,Biomaterials,Biophysics,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3