1. Utilizing Cloud Computing to address big geospatial data challenges
2. S. Wang, G. Li, X. Yao, Y. Zeng, L. Pang, and L. Zhang, “A distributed storage and access approach for massive remote sensing data in mongodb,” ISPRS International Journal of Geo-Information 8, 1–16 (2019).
3. M. Yang, H. Mei, Y. Yang, and D. Huang, “Efficient storage method for massive remote sensing image via spark-based pyramid model,” International Journal of Innovative Computing, Information and Control 13, 1915–1928 (2017).
4. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing,” Proceedings of NSDI 2012: 9th USENIX Symposium on Networked Systems Design and Implementation, 15–28 (2012).
5. The Australian Geoscience Data Cube — Foundations and lessons learned