A Distributed Storage and Access Approach for Massive Remote Sensing Data in MongoDB

Author:

Wang Shuang,Li Guoqing,Yao XiaochuangORCID,Zeng Yi,Pang Lushen,Zhang Lianchong

Abstract

With the rapid development of earth-observation technology, the amount of remote sensing data has increased exponentially, and traditional relational databases cannot satisfy the requirements of managing large-scale remote sensing data. To address this problem, this paper undertakes intensive research of the NoSQL (Not Only SQL) data management model, especially the MongoDB database, and proposes a new approach to managing large-scale remote sensing data. Firstly, based on the sharding technology of MongoDB, a distributed cluster architecture was designed and established for massive remote sensing data. Secondly, for the convenience in the unified management of remote sensing data, an archiving model was constructed, and remote sensing data, including structured metadata and unstructured image data, were stored in the above cluster separately, with the metadata stored in the form of a document, and image data stored with the GridFS mechanism. Finally, by designing different shard strategies and comparing MongoDB cluster with a typical relational database, several groups of experiments were conducted to verify the storage performance and access performance of the cluster. The experimental results show that the proposed method can overcome the deficiencies of traditional methods, as well as scale out the database, which is more suitable for managing massive remote sensing data and can provide technical support for the management of massive remote sensing data.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3