Experimental characterization of the flowfield and cavitation physics of a tip-loaded hydrofoil

Author:

Koncoski Jeremy J.1ORCID,Kunz Robert F.1ORCID,Nickels Adam S.2ORCID,Devilbiss David W.2,Harris Jeffrey R.2ORCID

Affiliation:

1. Department of Mechanical Engineering, Pennsylvania State University 1 , University Park, Pennsylvania 16802, USA

2. Applied Research Laboratory, Pennsylvania State University 2 , University Park, Pennsylvania 16802, USA

Abstract

This paper reports an experimental study of tip vortex flowfield and cavitation inception of a tip-loaded hydrofoil. Vortex strength, wandering, and turbulence statistics are characterized using stereo particle image velocimetry (SPIV) in a water tunnel facility, at a chord Reynolds number of 1.3×106. Cavitation physics are characterized using high-speed videography and dual-hydrophone acoustic cavitation measurements. The loading of the rectangular planform hydrofoil has a maximum at 65% span, 56% greater than that at the root, i.e., the hydrofoil loading is representative of non-elliptically loaded open propellers. Acoustic cavitation inception is quantified and is observed to precede visual cavitation onset using unaided and high-speed imaging. Measurements reported here show that vorticity fluctuations are nearly of the same magnitude as the ensemble vorticity. Instantaneous measurements of vorticity at the trailing edge, 12-chord downstream, and one-chord downstream positions are reported. Their peak magnitudes are located adjacent to the ensemble vortex center and are between four and five times the ensemble mean. The fluctuating vorticity measurements, taken in conjunction with high-speed video observations, provide insight into the hydrodynamic conditions responsible for intermittent cavitation events. The reported measurements elucidate instantaneous and mean turbulence physics associated with vortex cavitation and can provide a validation basis for numerical simulations.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3