Ultrashort channel chemical vapor deposited bilayer WS2 field-effect transistors

Author:

Shi Xinhang1ORCID,Li Xuefei1ORCID,Guo Qi1ORCID,Zeng Min1ORCID,Wang Xin1,Wu Yanqing12ORCID

Affiliation:

1. Wuhan National High Magnetic Field Center and School of Optical and Electronic Information, Huazhong University of Science and Technology 1 , Wuhan 430074, China

2. School of Integrated Circuits, Peking University 2 , Beijing 100871, China

Abstract

Two-dimensional transition metal dichalcogenides (TMDs) are potential candidates for next generation channel materials owing to their atomically thin structure and high carrier mobility, which allow for the ultimate scaling of nanoelectronics. However, TMDs-based field-effect transistors are still far from delivering the expected performance, which is mainly attributed to their high contact resistance and low saturation velocity (vsat). In this work, we report high-performance short-channel WS2 transistors based on bandgap engineering. The bilayer WS2 channel not only shows a higher average field-effect mobility (μFE) than the monolayer channel but also exhibits excellent metal-Ohmic contact using a regular physical vapor deposition deposited Ni/Au contact, reducing the Rc value to a record low value of 0.38 kΩ · μm without any intentional doping. The bilayer WS2 device of the 80 nm channel exhibits a high on-state current of 346 μA/μm at Vds = 1 V, near-zero drain-induced barrier lowering, and a record high Ion/Ioff ratio over 109. Furthermore, a record high on-state current of 635 μA/μm at Vds = 1 V and a record high vsat of 3.8 × 106 cm/s have been achieved for a shorter 18 nm channel device, much higher than previous WS2 transistors. This work reveals the intrinsically robust nature of bilayer WS2 crystals with promising potential for integration with conventional fabrication processes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Strategic Priority Research Program of CAS

111 project

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3