Affiliation:
1. Wuhan National High Magnetic Field Center and School of Optical and Electronic Information, Huazhong University of Science and Technology 1 , Wuhan 430074, China
2. School of Integrated Circuits, Peking University 2 , Beijing 100871, China
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) are potential candidates for next generation channel materials owing to their atomically thin structure and high carrier mobility, which allow for the ultimate scaling of nanoelectronics. However, TMDs-based field-effect transistors are still far from delivering the expected performance, which is mainly attributed to their high contact resistance and low saturation velocity (vsat). In this work, we report high-performance short-channel WS2 transistors based on bandgap engineering. The bilayer WS2 channel not only shows a higher average field-effect mobility (μFE) than the monolayer channel but also exhibits excellent metal-Ohmic contact using a regular physical vapor deposition deposited Ni/Au contact, reducing the Rc value to a record low value of 0.38 kΩ · μm without any intentional doping. The bilayer WS2 device of the 80 nm channel exhibits a high on-state current of 346 μA/μm at Vds = 1 V, near-zero drain-induced barrier lowering, and a record high Ion/Ioff ratio over 109. Furthermore, a record high on-state current of 635 μA/μm at Vds = 1 V and a record high vsat of 3.8 × 106 cm/s have been achieved for a shorter 18 nm channel device, much higher than previous WS2 transistors. This work reveals the intrinsically robust nature of bilayer WS2 crystals with promising potential for integration with conventional fabrication processes.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Strategic Priority Research Program of CAS
111 project
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献