Scaling effects in the alternating-current poling of thin PIN-PMN-PT single crystals

Author:

Kim Hwang-Pill1ORCID,Wan Haotian1ORCID,Lu Xuanming2,Yamashita Yohachi (John)13ORCID,Jiang Xiaoning1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA

2. Ultrasound, Siemens Healthineers, Issaquah, Washington 98029, USA

3. Faculty of Engineering, Toyama Prefectural University, Toyama 9390398, Japan

Abstract

AC-poling of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals with a thickness of 0.06–0.16 mm was studied in this paper. Compared with DC-poled samples, enhancements in piezoelectric and dielectric properties can be obtained when the thickness is above 0.1 mm. However, inconsistency in poling effects was found in the crystals with thickness below 0.1 mm. To elucidate why such scaling effect arises, surface roughness was measured by an atomic force microscopy to correlate surface morphology and poling effects. It was found that non-uniform surface roughness led to inconsistent and decreased properties. Furthermore, temperature-dependent dielectric permittivity spectra were measured to explore how crystal thickness affects the thermal stability of ferroelectric phases. It is noted that complex changes in crystallographic symmetries emanate by decreasing thickness. Such phenomena can be attributed to more influential effects of surface morphology when thickness is reduced. We hope this work suggests a clue for solving the scaling effects of AC-poling on relaxor-PbTiO3 single crystals.

Funder

Office of Naval Research

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3