Affiliation:
1. Department of Physics and NTIS—European Centre of Excellence, University of West Bohemia, Univerzitni 8, 30614 Plzen, Czech Republic
Abstract
Crystalline zinc oxide thin films are important due to a combination of optical transparency, electrical conductivity, and piezoelectric and pyroelectric properties. These functional properties are improved with increasing perfection of the crystalline structure. In this paper, classical molecular dynamics with a reactive force field was used to simulate the atom-by-atom growth of ZnO x films on a crystalline template. Contrary to previous modeling studies, the effect of a wide range of process parameters (elemental ratio x, kinetic energy of arriving atoms, and fraction of fast atoms in the particle flux) on the film crystallinity was investigated. All the parameters were found to have a significant impact. Counterintuitively, the highest crystal quality was obtained for slightly overstoichiometric films with x > 1. The results provide a quantitative insight into the role of individual deposition parameters, and the identification of their optimum values facilitates a further improvement of the film properties.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献