Review on ZnO-based piezotronics and piezoelectric nanogenerators: aspects of piezopotential and screening effect

Author:

Pandey Rajiv Kumar,Dutta Jit,Brahma SanjayaORCID,Rao Bruno,Liu Chuan-PuORCID

Abstract

Abstract Among various piezoelectric materials, ZnO has attracted a great deal of attention due to facile preparations and exceptional semiconductor characteristics compared to other conventional piezoceramics or organic piezoelectric materials. One of the issues hindering ZnO from progressing into applications is the screening effect, where the intrinsic piezopotential generated upon mechanical deformations is screened and becomes waned or even diminished by the presence of intrinsic free carriers in ZnO. Consequently, ZnO-based piezoelectric devices often suffer from low output voltages, resulting in low total output power generation even though the output current could be larger than those made of insulating piezoelectric materials, such as PZT, polyvinylidene fluoride, and barium titanate. It is therefore vital to fully understand the impact of the screening effect and produce strategies to handle this issue in the context of piezotronics and piezoelectric nanogenerators (PENG). Therefore, this article presents a comprehensive review of growth methodologies for various ZnO nanostructures, structure modifications, effects of free carriers on the screening effect and strategies for device applications, including strain-gated transistors, PENG and piezotronic sensors for gas, humidity and bio-molecules etc.

Funder

Ministry of Science and Technology Taiwan

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3