E–H transitions in Ar/O2 and Ar/Cl2 inductively coupled plasmas: Antenna geometry and operating conditions

Author:

Piskin Tugba1ORCID,Qian Yuchen2ORCID,Pribyl Patrick2ORCID,Gekelman Walter2ORCID,Kushner Mark J.1ORCID

Affiliation:

1. Electrical Engineering and Computer Science Department, University of Michigan 1 , 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA

2. Physics Department, University of California 2 , Los Angeles, California 90095, USA

Abstract

Electronegative inductively coupled plasmas (ICPs) are used for conductor etching in the microelectronics industry for semiconductor fabrication. Pulsing of the antenna power and bias voltages provides additional control for optimizing plasma–surface interactions. However, pulsed ICPs are susceptible to capacitive-to-inductive mode transitions at the onset of the power pulse due to there being low electron densities at the end of the prior afterglow. The capacitive (E) to inductive (H) mode transition is sensitive to the spatial configuration of the plasma at the end of the prior afterglow, circuit (matchbox) settings, operating conditions, and reactor configurations, including antenna geometry. In this paper, we discuss results from a computational investigation of E–H transitions in pulsed ICPs sustained in Ar/Cl2 and Ar/O2 gas mixtures while varying operating conditions, including gas mixture, pulse repetition frequency, duty cycle of the power pulse, and antenna geometry. Pulsed ICPs sustained in Ar/Cl2 mixtures are prone to significant E–H transitions due to thermal dissociative attachment reactions with Cl2 during the afterglow which reduce pre-pulse electron densities. These abrupt E–H transitions launch electrostatic waves from the formation of a sheath at the boundaries of the plasma and under the antenna in particular. The smoother E–H transitions observed for Ar/O2 mixture results from the higher electron density at the start of the power pulse due to the lack of thermal electron attaching reactions to O2. Ion energy and angular distributions (IEADs) incident onto the wafer and the dielectric window under the antenna are discussed. The shape of the antenna influences the severity of the E–H transition and the IEADs, with antennas having larger surface areas facing the plasma producing larger capacitive coupling. Validation of the model is performed by comparison of computed electron densities with experimental measurements.

Funder

National Science Foundation

Lam Research

Samsung Electronics

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous hybrid optimization of a SiO2 plasma etching mechanism;Journal of Vacuum Science & Technology A;2024-06-28

2. RF Gridded Ion Thruster Design for Laboratory Experiments;AIAA SCITECH 2024 Forum;2024-01-04

3. Plasma application in atomic layer etching;Physics of Plasmas;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3