Abstract
Pressure–temperature (PT) flash calculations are a performance bottleneck of compositional-flow simulations. With the sparse grid surrogate, the computing burden of PT flash calculations is shifted from the online stage to the offline stage of the compositional-flow simulations, and a great acceleration is achieved. It is known that the data-driven neural network can also be a surrogate of PT flash calculations. However, flash calculations are carried out in the training stage, i.e., the offline stage, which means the computing burden of PT flash calculations still exists in the offline stage. With physics-informed neural networks, the two heavy-burden routines of PT flash calculations, the successive substitution technique and stability analysis, are not carried out in the offline stage, and therefore, the computing burden in the offline stage is removed. After training, the phase condition and the compositions are the output of the neural network. The numerical experiments demonstrate the correctness and the applicability of the work. To the best of our knowledge, this is the first work to remove the performance bottleneck of PT flash calculations during both the online and offline stages of compositional-flow simulations.
Funder
Natural Science Foundation of Shenzhen City
King Abdullah University of Science and Technology
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献