Physics-informed machine learning: case studies for weather and climate modelling

Author:

Kashinath K.1ORCID,Mustafa M.1,Albert A.12,Wu J-L.13,Jiang C.14,Esmaeilzadeh S.5,Azizzadenesheli K.6,Wang R.17,Chattopadhyay A.18,Singh A.12,Manepalli A.12,Chirila D.9,Yu R.7,Walters R.10,White B.2ORCID,Xiao H.11,Tchelepi H. A.5,Marcus P.4,Anandkumar A.312,Hassanzadeh P.8,Prabhat 1

Affiliation:

1. NERSC - Lawrence Berkeley National Lab, Berkeley, CA, USA

2. Terrafuse Inc., Berkeley, CA, USA

3. Caltech, Pasadena, CA, USA

4. University of California, Berkeley, CA, USA

5. Stanford University, Stanford, CA, USA

6. Purdue University, West Lafayette, IN, USA

7. UC San Diego, La Jolla, CA, USA

8. Rice University, Houston, TX, USA

9. Alfred Wegener Institute, Bremerhaven, Germany

10. Northeastern University, Boston, MA, USA

11. Virginia Tech, Blacksburg, VA, USA

12. NVIDIA, Santa Clara, California, USA

Abstract

Machine learning (ML) provides novel and powerful ways of accurately and efficiently recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio-temporal evolution of weather and climate processes. Off-the-shelf ML models, however, do not necessarily obey the fundamental governing laws of physical systems, nor do they generalize well to scenarios on which they have not been trained. We survey systematic approaches to incorporating physics and domain knowledge into ML models and distill these approaches into broad categories. Through 10 case studies, we show how these approaches have been used successfully for emulating, downscaling, and forecasting weather and climate processes. The accomplishments of these studies include greater physical consistency, reduced training time, improved data efficiency, and better generalization. Finally, we synthesize the lessons learned and identify scientific, diagnostic, computational, and resource challenges for developing truly robust and reliable physics-informed ML models for weather and climate processes.This article is part of the theme issue ‘Machine learning for weather and climate modelling’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference130 articles.

1. The Royal Society 2019 The AI revolution in scientific research. London UK: The Royal Society. (http://www.The-Royal-Society-The-AI-revolution-in-scientific-research.com)

2. The Fourth Paradigm 10 Years On

3. Deep learning

4. Cramming more components onto integrated circuits;Moore GE;Electronics,1965

5. The future of computing beyond Moore’s Law

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3