Separation delay in turbulent boundary layers via model predictive control of large-scale motions

Author:

Tsolovikos Alexandros1ORCID,Jariwala Akshit1ORCID,Suryanarayanan Saikishan2ORCID,Bakolas Efstathios1ORCID,Goldstein David1ORCID

Affiliation:

1. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin 1 , Austin, Texas 78712-1221, USA

2. Department of Mechanical Engineering, The University of Akron 2 , Akron, Ohio 44325-3903, USA

Abstract

Turbulent boundary layers are dominated by large-scale motions (LSMs) of streamwise momentum surplus and deficit that contribute significantly to the statistics of the flow. In particular, the high-momentum LSMs residing in the outer region of the boundary layer have the potential to re-energize the flow and delay separation if brought closer to the wall. This work explores the effect of selectively manipulating LSMs in a moderate Reynolds number turbulent boundary layer for separation delay via well-resolved large-eddy simulations. Toward that goal, a model predictive control scheme is developed based on a reduced-order model of the flow that directs LSMs of interest closer to the wall in an optimal way via a body force-induced downwash. The performance improvement achieved by targeting LSMs for separation delay, compared to a naive actuation scheme that does not account for the presence of LSMs, is demonstrated.

Funder

National Science Foundation

Alexander S. Onassis Public Benefit Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3