Classification of computed thermal tomography images with deep learning convolutional neural network

Author:

Ankel V.12ORCID,Shribak D.13ORCID,Chen W.-Y.1ORCID,Heifetz A.1ORCID

Affiliation:

1. Nuclear Science and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

2. Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

3. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract

Thermal tomography (TT) is a computational method for the reconstruction of depth profile of the internal material defects from Pulsed Infrared Thermography (PIT) nondestructive evaluation. The PIT method consists of recording material surface temperature transients with a fast frame infrared camera, following thermal pulse deposition on the material surface with a flashlamp and heat diffusion into material bulk. TT algorithm obtains depth reconstructions of thermal effusivity, which has been shown to provide visualization of the subsurface internal defects in metals. In many applications, one needs to determine the defect shape and orientation from reconstructed effusivity images. Interpretation of TT images is non-trivial because of blurring, which increases with depth due to the heat diffusion-based nature of image formation. We have developed a deep learning convolutional neural network (CNN) to classify the size and orientation of subsurface material defects in TT images. CNN was trained with TT images produced with computer simulations of 2D metallic structures (thin plates) containing elliptical subsurface voids. The performance of CNN was investigated using test TT images developed with computer simulations of plates containing elliptical defects, and defects with shapes imported from scanning electron microscopy images. CNN demonstrated the ability to classify radii and angular orientation of elliptical defects in previously unseen test TT images. We have also demonstrated that CNN trained on the TT images of elliptical defects is capable of classifying the shape and orientation of irregular defects.

Funder

Office of Nuclear Energy Technologies

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3