Unsupervised learning-enabled pulsed infrared thermographic microscopy of subsurface defects in stainless steel

Author:

Zhang Xin,Fang Tianyang,Saniie Jafar,Bakhtiari Sasan,Heifetz Alexander

Abstract

AbstractMetallic structures produced with laser powder bed fusion (LPBF) additive manufacturing method (AM) frequently contain microscopic porosity defects, with typical approximate size distribution from one to 100 microns. Presence of such defects could lead to premature failure of the structure. In principle, structural integrity assessment of LPBF metals can be accomplished with nondestructive evaluation (NDE). Pulsed infrared thermography (PIT) is a non-contact, one-sided NDE method that allows for imaging of internal defects in arbitrary size and shape metallic structures using heat transfer. PIT imaging is performed using compact instrumentation consisting of a flash lamp for deposition of a heat pulse, and a fast frame infrared (IR) camera for measuring surface temperature transients. However, limitations of imaging resolution with PIT include blurring due to heat diffusion, sensitivity limit of the IR camera. We demonstrate enhancement of PIT imaging capability with unsupervised learning (UL), which enables PIT microscopy of subsurface defects in high strength corrosion resistant stainless steel 316 alloy. PIT images were processed with UL spatial–temporal separation-based clustering segmentation (STSCS) algorithm, refined by morphology image processing methods to enhance visibility of defects. The STSCS algorithm starts with wavelet decomposition to spatially de-noise thermograms, followed by UL principal component analysis (PCA), fine-tuning optimization, and neural learning-based independent component analysis (ICA) algorithms to temporally compress de-noised thermograms. The compressed thermograms were further processed with UL-based graph thresholding K-means clustering algorithm for defects segmentation. The STSCS algorithm also includes online learning feature for efficient re-training of the model with new data. For this study, metallic specimens with calibrated microscopic flat bottom hole defects, with diameters in the range from 203 to 76 µm, were produced using electro discharge machining (EDM) drilling. While the raw thermograms do not show any material defects, using STSCS algorithm to process PIT images reveals defects as small as 101 µm in diameter. To the best of our knowledge, this is the smallest reported size of a sub-surface defect in a metal imaged with PIT, which demonstrates the PIT capability of detecting defects in the size range relevant to quality control requirements of LPBF-printed high-strength metals.

Funder

Nuclear Energy Enabling Technologies

National Nuclear Security Administration

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3