Designing ITER motional Stark effect line shift (MSE-LS) spectrometers

Author:

Uzun-Kaymak I. U.1ORCID,Galante M. E.1ORCID,Foley E. L.1ORCID,Levinton F. M.1ORCID

Affiliation:

1. Nova Photonics, Inc. , Princeton, New Jersey 08540, USA

Abstract

As a part of ITER beam aided diagnostics, the design of Motional Stark Effect (MSE) diagnostic observing the emission from the Balmer-α line is underway. The physics of Stark splitting shows that the Stark manifold is polarization dependent, and the energy splitting results in a line shift proportional to the electric field. Due to the challenges of maintaining the calibration of the plasma facing mirrors in ITER, the conventional MSE polarimetry measurement technique is replaced with a spectral approach that is deemed more favorable in the ITER environment. The MSE line shift (LS) diagnostic is designed to quantify the Lorentz electric field magnitude by measuring the Stark manifold using visible spectroscopy. In the presence of large magnetic fields and high energy heating beams of 1 MeV, the expected Stark splitting is much larger than in typical devices. The MSE-LS design has unique challenges requiring careful consideration and modeling of its viewing geometry and photon budget. The MSE-LS approach on ITER is promising but has stringent demands on the allowable errors for the statistical and systematic fitting uncertainties. In this study, a full system model and numerical simulations of data for each sightline are completed. For a range of optical transmission fractions, photon noise analysis is conducted to determine the statistical uncertainties. This provides guidance on the spectrometer throughput, dispersion at the detector, optics, and other design choices. A conceptual design of a high throughput spectrometer with a volume phase transmission grating is presented.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The motional Stark effect diagnostic for ITER;Review of Scientific Instruments;2024-07-01

2. Designing ITER motional Stark effect line shift (MSE-LS) spectrometers;Review of Scientific Instruments;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3