Scaling laws for natural convection boundary layer of a Pr > 1 fluid on a vertical solid surface subject to a sinusoidal temperature in a linearly-stratified ambient fluid

Author:

Lin WenxianORCID,Armfield S. W.1ORCID,Khatamifar Mehdi2ORCID

Affiliation:

1. School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney 2 , NSW 2006, Australia

2. College of Science & Engineering, James Cook University 1 , Townsville, QLD 4811, Australia

Abstract

The understanding of the transient behavior of natural convection boundary layer (NCBL) on a heated vertical solid surface under various heating conditions is of fundamental significance and application importance. In this study, scalings for the parameters representing the behavior of unsteady NCBL flow of a linearly-stratified Pr > 1 fluid on a semi-infinite vertical solid surface heated with a time-varying sinusoidal temperature at different development stages are developed with a scaling analysis, in terms of Ra, Pr, s, and fn, which are the Rayleigh number, Prandtl number, stratification number, and frequency of the sinusoidal temperature, respectively. These scalings are validated and quantified with a series of numerical simulations over wide ranges of Ra, Pr, s, and fn. The frequency of the fluctuations experienced by the NCBL behavior at the transitional stage, due to the stratification of the ambient fluid, is also analyzed, and it is shown that the previously obtained scaling for the unsteady NCBL case with the constant heat flux heating condition is basically applicable for the current case, Ra and fn have additional effects as well due to the time-varying nature of the applied temperature.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3