Abstract
The global transport of heat and momentum in turbulent convection is constrained by thin thermal and viscous boundary layers at the heated and cooled boundaries of the system. This bottleneck is thought to be lifted once the boundary layers themselves become fully turbulent at very high values of the Rayleigh numberRa—the dimensionless parameter that describes the vigor of convective turbulence. Laboratory experiments in cylindrical cells forRa≳1012have reported different outcomes on the putative heat transport law. Here we show, by direct numerical simulations of three-dimensional turbulent Rayleigh–Bénard convection flows in a slender cylindrical cell of aspect ratio1/10, that the Nusselt number—the dimensionless measure of heat transport—follows the classical power law ofNu=(0.0525±0.006)×Ra0.331±0.002up toRa=1015. Intermittent fluctuations in the wall stress, a blueprint of turbulence in the vicinity of the boundaries, manifest at allRaconsidered here, increasing with increasingRa, and suggest that an abrupt transition of the boundary layer to turbulence does not take place.
Funder
DOE | Office of Science
Deutsche Forschungsgemeinschaft
Publisher
Proceedings of the National Academy of Sciences
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献