Data-driven global stability of vertical planar liquid jets by dynamic mode decomposition on random perturbations

Author:

Colanera Antonio1ORCID,Della Pia Alessandro1ORCID,Chiatto Matteo1ORCID

Affiliation:

1. Department of Industrial Engineering, Aerospace Sector, Università degli Studi di Napoli “Federico II”, Naples 80125, Italy

Abstract

A data-driven approach to estimate the global spectrum of gravitational planar liquid jets (sheet or curtain flows) is presented in this work. The investigation is carried out by means of two-dimensional numerical simulations performed through the solver BASILISK, based on the one-fluid formulation and the volume-of-fluid approach. The dynamic mode decomposition technique is applied to extract the underlying linear operator, considering random perturbations of the base flow. The effectiveness of this procedure is first evaluated comparing results with those of a simplified one-dimensional curtain model in terms of spectrum and eigenfunctions. The methodology is then applied to a two-dimensional configuration obtaining the BiGlobal spectra for both supercritical (Weber number We > 1) and subcritical ( We < 1) regimes. Results highlight that in supercritical regime, the spectrum presents three branches: the upper and lower ones exhibit a purely sinuous behavior with frequencies quite close to those predicted by the one-dimensional model; the middle branch presents a predominant varicose component, increasing with the frequency. The subcritical spectrum, instead, shows that the first two less stable eigenvalues, sorted by increasing frequency, exhibit, respectively, a sinuous and a varicose behavior, while their growth rate is almost the same. As expected, the subcritical regime does not reveal the slow branch. The effect of the density ratio, [Formula: see text], between the two phases is investigated, revealing that the flow system is unstable for [Formula: see text]. Topological inspections of the leading modes in this unstable configuration show that the predominance of a varicose behavior is related to the rupture of the curtain.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3