Affiliation:
1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
2. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
Abstract
Recently, flexible electronic devices are of increasing interest due to their wide range of application fields, including information storage, energy conversion, and wearable and implantable electronics. In particular, freestanding inorganic oxide films are proved to be an extraordinary versatile platform for flexible electronics owing to their super elasticity, outstanding functionalities, tunability, and long-term stability. In this Perspective, we review the up-to-date advances of freestanding inorganic oxide films from the perspectives of synthesis methods, physical properties, and device applications. First, preparation strategies based on epitaxial lift-off technologies are classified into physical and chemical aspects that are to be introduced. Second, we discuss the physical properties of freestanding inorganic oxide films, especially in terms of ferroelectricity, magnetism, multiferroics, etc. Third, we highlight several device applications in the fields of data memory, energy storage, and health care. Finally, we conclude with a future perspective into prospects and challenges regarding the syntheses and applications of freestanding inorganic oxide films.
Funder
National Nature Science Foundation of China
Shenzhen Science and Technology Program
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献