A new approach to electrically detected magnetic resonance: Spin-dependent transient spectroscopy

Author:

Myers Kenneth J.1ORCID,Lenahan Patrick M.2ORCID,Ashton James P.3ORCID,Ryan Jason T.4ORCID

Affiliation:

1. Intercollege Graduate Degree Program in Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

2. Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

3. High Frequency Technology Center, Keysight Technologies, 1400 Fountaingrove Pkwy, Santa Rosa, California 95403, USA

4. Alternative Computing Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA

Abstract

Electrically detected magnetic resonance (EDMR) is arguably the most sensitive method available to study electrically active point defects in semiconductor devices. Most EDMR studies have utilized spin-dependent recombination current and, thus, require p–n junctions or a photoconductive structure. Some time ago, Chen and Lang proposed and demonstrated EDMR via spin-dependent deep level transient spectroscopy in metal–oxide–semiconductor capacitors. We report on a similar and significantly simpler technique: spin-dependent transient spectroscopy (SDTS). We show that the sensitivity of this technique is independent of the resonance field and frequency. Through capacitance–voltage analysis, combined with our SDTS results, this technique can (crudely) provide information about the density of states of defects with a broad distribution of energy levels. In addition, we show that SDTS can be readily adapted to near-zero-field magnetoresistance effect measurements.

Funder

Defense Threat Reduction Agency

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3