Undoing band anticrossing in highly mismatched alloys by atom arrangement

Author:

Meng Qian1ORCID,Bank Seth R.1ORCID,Wistey Mark A.23ORCID

Affiliation:

1. Microelectronics Research Center and Department of ECE, The University of Texas at Austin 1 , Austin, Texas 78758, USA

2. Materials Science, Engineering, and Commercialization Program, Texas State University 2 , San Marcos, Texas 78666, USA

3. Department of Physics, Texas State University 3 , San Marcos, Texas 78666, USA

Abstract

The electronic structures of three highly mismatched alloys (HMAs)—GeC(Sn), Ga(In)NAs, and BGa(In)As—were studied using density functional theory with HSE06 hybrid functionals, with an emphasis on the local environment near the mismatched, highly electronegative atom (B, C, and N). These alloys are known for their counterintuitive reduction in the bandgap when adding the smaller atom, due to a band anticrossing (BAC) or splitting of the conduction band. Surprisingly, the existence of band splitting was found to be completely unrelated to the local displacement of the lattice ions near the mismatched atom. Furthermore, in BGaAs, the reduction in the bandgap due to BAC was weaker than the increase due to the lattice constant, which has not been observed among other HMAs but may explain differences among experimental reports. While local distortion in GeC and GaNAs was not the cause for BAC, it was found to enhance the bandgap reduction due to BAC. This work also found that mere contrast in electronegativity between neighboring atoms does not induce BAC. In fact, surrounding the electronegative atom with elements of even smaller electronegativity than the host (e.g., Sn or In) consistently decreased or even eliminated BAC. For a fixed composition, moving Sn toward C and In toward either N or B was always energetically favorable and increased the bandgap, consistent with experimental annealing results. Such rearrangement also delocalized the conduction band wavefunctions near the mismatched atom to resemble the original host states in unperturbed Ge or GaAs, causing the BAC to progressively weaken. These collective results were consistent whether the mismatched atom was a cation (N), anion (B), or fully covalent (C), varying only with the magnitude of its electronegativity, with B having the least effect. The effects can be explained by charge screening of the mismatched atom's deep electrostatic potential. Together, these results help explain differences in the bandgap and other properties reported for HMAs from different groups and provide insight into the creation of materials with designer properties.

Funder

National Science Foundation

Publisher

AIP Publishing

Reference65 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3