Laboratory study of the failed torus mechanism in arched, line-tied, magnetic flux ropes

Author:

Alt Andrew12ORCID,Ji Hantao12ORCID,Yoo Jongsoo2ORCID,Bose Sayak2ORCID,Goodman Aaron12ORCID,Yamada Masaaki2ORCID

Affiliation:

1. Department of Astrophysical Sciences, Princeton University 1 , Peyton Hall, Princeton, New Jersey 08544, USA

2. Princeton Plasma Physics Laboratory 2 , PO Box 451, Princeton, New Jersey 08543, USA

Abstract

Coronal mass ejections (CMEs) are some of the most energetic and violent events in our solar system. The prediction and understanding of CMEs are of particular importance due to the impact that they can have on Earth-based satellite systems and, in extreme cases, ground-based electronics. CMEs often occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. One potential cause for these eruptions is an ideal magnetohydrodynamic (MHD) instability, such as the kink or torus instability. Previous experiments on the magnetic reconnection experiment revealed a class of MFRs that were torus-unstable but kink-stable, which failed to erupt. These “failed-tori” went through a process similar to Taylor relaxation, where the toroidal current was redistributed before the eruption ultimately failed. We have investigated this behavior through additional diagnostics that measure the current distribution at the foot points and the energy distribution before and after an event. These measurements indicate that ideal MHD effects are sufficient to explain the energy distribution changes during failed torus events. This excludes Taylor relaxation as a possible mechanism of current redistribution during an event. A new model that only requires non-ideal effects in a thin layer above the electrodes is presented to explain the observed phenomena. This work broadens our understanding of the stability of MFRs and the mechanism behind the failed torus through the improved prediction of the torus instability and through new diagnostics to measure the energy inventory and current profile at the foot points.

Funder

U.S. Department of Energy

National Aeronautics and Space Administration

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3