Roles of excess minority carrier recombination and chemisorbed O2 species at SiO2/Si interfaces in Si dry oxidation: Comparison between p-Si(001) and n-Si(001) surfaces

Author:

Tsuda Yasutaka1ORCID,Yoshigoe Akitaka1ORCID,Ogawa Shuichi23ORCID,Sakamoto Tetsuya1,Yamamoto Yoshiki4,Yamamoto Yukio4,Takakuwa Yuji15

Affiliation:

1. Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo 679-5148, Japan

2. International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

3. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

4. Electrical and Electronics Engineering, Fukui College, National Institute of Technology, Geshi-cho, Sabae 916-8507, Japan

5. Micro System Integration Center, Tohoku University, 519-1176 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-0845, Japan

Abstract

This study provides experimental evidence for the following: (1) Excess minority carrier recombination at SiO2/Si interfaces is associated with O2 dissociative adsorption; (2) the x-ray induced enhancement of SiO2 growth is not caused by the band flattening resulting from the surface photovoltaic effect but by the electron–hole pair creation resulting from core level photoexcitation for the spillover of bulk Si electronic states toward the SiO2 layer; and (3) a metastable chemisorbed O2 species plays a decisive role in combining two types of the single- and double-step oxidation reaction loops. Based on experimental results, the unified Si oxidation reaction model mediated by point defect generation [S. Ogawa et al., Jpn. J. Appl. Phys., Part 1 59, SM0801 (2020)] is extended from the viewpoints of (a) the excess minority carrier recombination at the oxidation-induced vacancy site and (b) the trapping-mediated adsorption through the chemisorbed O2 species at the SiO2/Si interface.

Funder

Japan Society for the Promotion of Science

Japan Atomic Energy Agency

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3