Active flow control of a wing section in stall flutter by dielectric barrier discharge plasma actuators

Author:

Hajipour M.1ORCID,Ebrahimi A.1ORCID,Amandolese X.2

Affiliation:

1. Department of Aerospace Engineering, Sharif University of Technology, 11365-11155 Tehran, Iran

2. Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers, 75003 Paris, France

Abstract

This paper investigates the potential of using an active flow control technique to modify stall flutter oscillations of a NACA (National Advisory Committee for Aeronautics) 0015 wing section. Wind tunnel experiments have been performed with a test-rig that provides the elastic degree of freedom in pitch. Measurements of the clean airfoil are taken at preset angles of [Formula: see text], and for Reynolds numbers of [Formula: see text], which reveal the dependency of the stall flutter oscillations to Rec and θ0. Then, flow control experiments are carried out at [Formula: see text] and [Formula: see text]. Two dielectric barrier discharge plasma actuators have been employed simultaneously to exert dual-point excitation to the baseline flow. It is shown that during the upstroke half-cycle, plasma actuation postpones the dynamic stall of the airfoil and increases the maximum pitch angle of the stall flutter cycle. On the downstroke, dual-point excitation effectively improves the rate of pitching moment recovery and leads to flow reattachment at a larger pitch angle. Normalized excitation frequencies [Formula: see text] (where [Formula: see text] is the wake mode frequency of the stalled airfoil) ranging from 0.1 up to 3 have been examined. Among the controlled cases, excitation with [Formula: see text] and [Formula: see text] provides the largest and smallest pitch amplitude, respectively, and the case of [Formula: see text] demonstrates the most impact on flow reattachment. Finally, it has been concluded that the employed control strategy is effectively capable of modifying the dynamic stall process and associated pitching moment. However, a more sophisticated control strategy would be required to significantly mitigate the stall flutter oscillations.

Funder

Iran National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3