Pressure wavelet analysis of pitching oscillating airfoils in tandem configuration at low Reynolds number

Author:

Ghamkhar Kamran1ORCID,Ebrahimi Abbas1ORCID

Affiliation:

1. Department of Aerospace Engineering, Sharif University of Technology , 11365-11155 Tehran, Iran

Abstract

In this paper, the flow field around a tandem arrangement of two identical oscillating NACA (National Advisory Committee for Aeronautics) 0012 airfoils was investigated using the continuous wavelet transform. Wind tunnel experiments were conducted on a test stand that provided a wide range of sinusoidal pitching motion with frequencies up to 10 Hz. This study aims to explore the flow physics of the tandem airfoils that oscillate with independent reduced frequencies. For this sake, experiments were performed at a reduced frequency of 0.15 for the front airfoil and five different reduced frequencies for the rear airfoil, ranging from 0.05 to 0.3. The chord-based Reynolds number was 6 × 104, and the horizontal distance between airfoils was equal to one chord length. The unsteady surface pressure was measured, and the wavelet transform was employed to analyze the pressure fluctuations. Findings indicate that the presence of the rear airfoil in the wake of the front airfoil prevents the formation of the laminar separation bubble. Also, the ratio of upstream/downstream airfoil reduced frequencies appears as one of the dominant frequencies of pressure fluctuations on the rear airfoil. Furthermore, when the reduced frequency ratio of the airfoils is lower than one, the normal force on the rear airfoil is often less than that experienced by an isolated single airfoil. Specifically, at equal reduced frequencies of 0.15 for both upstream/downstream airfoils, the maximum value of the normal force coefficient on the rear airfoil decreases by 30% compared to the single airfoil.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3