Investigation of nonlocal data-driven methods for subgrid-scale stress modeling in large eddy simulation

Author:

Liu Bo1ORCID,Yu Huiyang1ORCID,Huang Haibo1ORCID,Liu Nansheng1ORCID,Lu Xiyun12ORCID

Affiliation:

1. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

A nonlocal subgrid-scale stress (SGS) model is developed based on the convolution neural network (CNN), which is a powerful supervised data-driven method and also an ideal approach to naturally consider spatial information due to its wide receptive field. The CNN-based models used in this study take primitive flow variables as input only, and then, the flow features are automatically extracted without any a priori guidance. The nonlocal models trained by direct numerical simulation (DNS) data of a turbulent channel flow at Re τ = 178 are accessed in both the a priori and a posteriori tests, providing reasonable flow statistics (such as mean velocity and velocity fluctuations) close to the DNS results even when extrapolating to a higher Reynolds number Re τ = 600. It is identified that the nonlocal models outperform local data-driven models, such as the artificial neural network, and some typical SGS models (e.g., the dynamic Smagorinsky model) in large eddy simulation (LES). The model is also robust with stable numerical simulation since the solutions can be well obtained when examining the grid resolution from one-half to double of the spatial resolution used in training. We also investigate the influence of receptive fields and propose using the two-point correlation analysis as a quantitative method to guide the design of nonlocal physical models. The present study provides effective data-driven nonlocal methods for SGS modeling in LES of complex anisotropic turbulent flows.

Funder

National Natural Science Foundation of China

Science Challenge Project

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3