Large eddy simulation of flow over a circular cylinder with a neural-network-based subgrid-scale model

Author:

Kim Myunghwa,Park Jonghwan,Choi HaecheonORCID

Abstract

A neural-network-based large eddy simulation is performed for flow over a circular cylinder. To predict the subgrid-scale (SGS) stresses, we train two fully connected neural network (FCNN) architectures with and without fusing information from two separate single-frame networks (FU and nFU, respectively), where the input variable is either the strain rate (SR) or the velocity gradient (VG). As the input variables, only the grid-filtered variables are considered for the SGS models of G-SR and G-VG, and both the grid- and test-filtered variables are considered for the SGS models of T-SR and T-VG. The training data are the filtered direct numerical simulation (fDNS) data at $Re_d=3900$ based on the free-stream velocity and cylinder diameter. Using the same grid resolution as that of the training data, the performances of G-SR and G-VG (grid-filtered inputs) and T-SR-FU and T-VG-FU (grid- and test-filtered inputs with fusion) are better than those of the dynamic Smagorinsky model and T-SR-nFU and T-VG-nFU (grid- and test-filtered inputs without fusion). These FCNN-based SGS models are applied to untrained flows having different grid resolutions from that of training data. Although the performances of G-SR and G-VG are degraded, T-SR-FU and T-VG-FU still provide good performances. Finally, T-SR-FU and T-VG-FU trained at $Re_d = 3900$ are applied to higher-Reynolds-number flows ( $Re_d = 5000$ and 10 000) and their results are also in good agreements with those of fDNS and previous experiment, indicating that adding the test-filtered variables and fusion increases the prediction capability even for untrained Reynolds number flows.

Funder

National Research Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3