Supersonic–subsonic transition region in radiative heat flow via self-similar solutions

Author:

Malka Elad12,Heizler Shay I.1ORCID

Affiliation:

1. Department of Physics, Nuclear Research Center-Negev, P.O. Box 9001, Beer Sheva 8419001, Israel

2. Racah Institute of Physics, The Hebrew University, 9190401 Jerusalem, Israel

Abstract

We study the radiative hydrodynamics flow of radiation-driven heat waves in hot dense plasmas, using approximate self-similar solutions. Specifically, we have focused on the intermediate regime between the pure radiative supersonic flow and the pure subsonic regime. These two regimes were investigated using both exact self-similar solutions and numerical simulations; however, most of the study used numerical simulations, mainly because the radiative heat wave and the shock regions are not self-similar altogether. In a milestone work [Garnier et al., “Self-similar solutions for a nonlinear radiation diffusion equation,” Phys. Plasmas 13, 092703 (2006)], it was found that for a specific power law dependency temperature profile, a unique exact self-similar solution exists that is valid for all physical regimes. In this work, we approximate Garnier's exact solution for a general power-law temperature-dependency, using simple analytical considerations. This approximate solution yields a good agreement compared to numerical simulations for the different thermodynamic profiles within the expected range of validity. In addition, we offer an approximate solution for the energies absorbed in the matter, again, for a general power-law temperature profile. Our approximate self-similar solution for the energy yields very good results compared to exact numerical simulations for both gold and [Formula: see text]. We also set a comparison of our self-similar solutions with the results of an experiment for radiation temperature measurement in a Hohlraum in low-density foams that is addressed directly to the intermediate regime, yielding a good agreement and similar trends. The different models as well as the numerical simulations are powerful tools to analyze the supersonic–subsonic transition region.

Funder

PAZY Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3