Characterization of similar Marshak waves observed at the LMJ

Author:

Courtois C.1ORCID,Gisbert R.1,Botrel R.2ORCID,Chaleil A.1,Chopineau L.1,Debesset S.3ORCID,Fariaut J.1,Henry O.3ORCID,Le Déroff L.3ORCID,Loupias B.1ORCID,Rousseau A.1,Soullie G.1,Villette B.1

Affiliation:

1. CEA, DAM 1 , DIF, F-91297 Arpajon, France

2. CEA, DAM 2 , VALDUC, F-21120 Is sur Tille, France

3. CEA, DAM 3 , CESTA, F-33114 Le Barp, France

Abstract

We detail results of two experiments performed at the Laser Mégajoule (LMJ) facility aimed at studying similar supersonic Marshak waves propagating in a low-density SiO2 aerogel enclosed in metallic tubes. Similar means here that these two experiments, driven by the same input radiation temperature history, use purposely very different tubes in terms of length (L = 1200 or 2000 μm), diameter (2R = 1000 or 2000 μm), nature of the wall (gold or copper), and aerogel densities (ρ = 30 or 20 mg/cm3), yet the transit time and the radiation temperature of the fronts at the tube exit are the same for both shots. Marshak waves are characterized at the exit using simultaneously for the first time to our knowledge, a one dimensional soft x-ray imager from which the radiation front transit time and curvature are measured and also a broadband x-ray spectrometer to infer its temperature history. These constraining results are then successfully compared to those from simple analytical models [Cohen et al., Phys. Rev. Res. 2, 023007 (2020) and Hurricane et al., Phys. Plasmas 13, 113303 (2006)] and from the three dimensional Lagrangian radiation-hydrodynamics code TROLL to get information on x-ray energy losses. Controlled compensation effects between the length, diameter, and nature of the tubes (governing these losses) are such that the radiation temperature drop along the tubes is eventually the same for these two similar shots.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3