In situ observation of medium range ordering and crystallization of amorphous TiO2 ultrathin films grown by atomic layer deposition

Author:

Abbasi Mehrdad1ORCID,Dong Yutao2ORCID,Meng Jun2ORCID,Morgan Dane2ORCID,Wang Xudong2ORCID,Hwang Jinwoo1ORCID

Affiliation:

1. Department of Materials Science and Engineering, The Ohio State University 1 , Columbus, Ohio 43210, USA

2. Department of Materials Science and Engineering, University of Wisconsin-Madison 2 , Madison, Wisconsin 53706, USA

Abstract

The evolution of medium range ordering (MRO) and crystallization behavior of amorphous TiO2 films grown by atomic layer deposition (ALD) were studied using in situ four-dimensional scanning transmission electron microscopy. The films remain fully amorphous when grown at 120 °C or below, but they start showing crystallization of anatase phases when grown at 140 °C or above. The degree of MRO increases as a function of temperature and maximizes at 140 °C when crystallization starts to occur, which suggests that crystallization prerequires the development of nanoscale MRO that serves as the site of nucleation. In situ annealing of amorphous TiO2 films grown at 80 °C shows enhancement of MRO but limited number of nucleation, which suggests that post-annealing develops only a small portion of MRO into crystal nuclei. The MRO regions that do not develop into crystals undergo structural relaxation instead, which provides insights into the critical size and degree of ordering and the stability of certain MRO types at different temperatures. In addition, crystallographic defects were observed within crystal phases, which likely negate corrosion resistance of the film. Our result highlights the importance of understanding and controlling MRO for optimizing ALD-grown amorphous films for next-generation functional devices and renewable energy applications.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3