A memristive neuron and its adaptability to external electric field

Author:

Yang Feifei1ORCID,Xu Ying2ORCID,Ma Jun134ORCID

Affiliation:

1. College of Electrical and Information Engineering, Lanzhou University of Technology 1 , Lanzhou 730050, China

2. School of Mathematics and Statistics, Shandong Normal University 2 , Ji'nan 250014, China

3. Department of Physics, Lanzhou University of Technology 3 , Lanzhou 730050, China

4. School of Science, Chongqing University of Posts and Telecommunications 4 , Chongqing 400065, China

Abstract

Connecting memristors into any neural circuit can enhance its potential controllability under external physical stimuli. Memristive current along a magnetic flux-controlled memristor can estimate the effect of electromagnetic induction on neural circuits and neurons. Here, a charge-controlled memristor is incorporated into one branch circuit of a simple neural circuit to estimate the effect of an external electric field. The field energy kept in each electric component is respectively calculated, and equivalent dimensionless energy function H is obtained to discern the firing mode dependence on the energy from capacitive, inductive, and memristive channels. The electric field energy HM in a memristive channel occupies the highest proportion of Hamilton energy H, and neurons can present chaotic/periodic firing modes because of large energy injection from an external electric field, while bursting and spiking behaviors emerge when magnetic field energy HL holds maximal proportion of Hamilton energy H. The memristive current is modified to control the firing modes in this memristive neuron accompanying with a parameter shift and shape deformation resulting from energy accommodation in the memristive channel. In the presence of noisy disturbance from an external electric field, stochastic resonance is induced in the memristive neuron. Exposed to stronger electromagnetic field, the memristive component can absorb more energy and behave as a signal source for energy shunting, and negative Hamilton energy is obtained for this neuron. The new memristive neuron model can address the main physical properties of biophysical neurons, and it can further be used to explore the collective behaviors and self-organization in networks under energy flow and noisy disturbance.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3