Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics

Author:

Oesterle Jonathan1ORCID,Behrens Christian1ORCID,Schröder Cornelius1,Hermann Thoralf2,Euler Thomas134ORCID,Franke Katrin14,Smith Robert G5ORCID,Zeck Günther2ORCID,Berens Philipp1346ORCID

Affiliation:

1. Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany

2. Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Reutlingen, Germany

3. Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany

4. Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany

5. Department of Neuroscience, University of Pennsylvania, Philadelphia, United States

6. Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany

Abstract

While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an OFF- and an ON-cone bipolar cell from the mouse retina based on two-photon imaging data. We obtained multivariate posterior distributions specifying plausible parameter ranges consistent with the data and allowing to identify parameters poorly constrained by the data. To demonstrate the potential of such mechanistic data-driven neuron models, we created a simulation environment for external electrical stimulation of the retina and optimized stimulus waveforms to target OFF- and ON-cone bipolar cells, a current major problem of retinal neuroprosthetics.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Baden-Württemberg Stiftung

National Institutes of Health

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3