Affiliation:
1. Department of Mechanical Engineering, University of Hong Kong 1 , Pokfulam, Hong Kong
2. Department of Civil and Environmental Engineering, Hong Kong Polytechnic University 2 , Hung Hom, Hong Kong
Abstract
Interactions between surface gravity waves and a floating rigid body are complex, as waves may reflect from, break on, and be transmitted behind the body. Studies of these phenomena are critically important in improving the safety and functional efficiency of offshore structures. Here, the wave attenuation performance and motions of a type of floating breakwater (FB) are studied through numerical and experimental approaches. A numerical wave tank (NWT) is developed based on the software OpenFOAM and properties of wave channel from a laboratory. In the NWT, the air–water interface is captured by the volume of fluid method. The motions of FB are tracked by the six degrees of freedom model. A mooring system model is developed to simulate the constraints of the FB. Large eddy simulation turbulence modeling is implemented for the wave breaking processes. A model FB with a scale of 1:20 is tested in both the experimental and numerical wave channel. Wave heights at the back/front of the FB and the constraint forces of the mooring wires are measured. The numerical models are validated by comparing the results with experimental measurements. The variations of transmission/reflection coefficients, energy dissipation rate, and maximum mooring force are calculated. Changes of the response amplitude operators with the ratio of FB width to wavelength ( B / L w) and wave steepness are analyzed. The wave transmission coefficient will drop below 0.8 if the value of B / L w is larger than 0.3, but will go over 0.95 if B / L w is less than 0.1. Wave steepness has a large influence on FB motions and the mooring system. The effect of Stokes drift is observed by the shift of position of the FB.
Funder
Research Grants Council, University Grants Committee
Drainage Services Department of the Hong Kong Government
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献