Data-driven learning algorithm to predict full-field aerodynamics of large structures subject to crosswinds

Author:

Chen XianjiaORCID,Yin BoORCID,Yuan ZhengORCID,Yang GuoweiORCID,Li Qiang,Sun Shouguang,Wei YujieORCID

Abstract

Quick and high-fidelity updates about aerodynamic loads of large-scale structures, from trains, planes, and automobiles to many civil infrastructures, serving under the influence of a broad range of crosswinds are of practical significance for their design and in-use safety assessment. Herein, we demonstrate that data-driven machine learning (ML) modeling, in combination with conventional computational methods, can fulfill the goal of fast yet faithful aerodynamic prediction for moving objects subject to crosswinds. Taking a full-scale high-speed train, we illustrate that our data-driven model, trained with a small amount of data from simulations, can readily predict with high fidelity pressure and viscous stress distributions on the train surface in a wide span of operating speed and crosswind velocity. By exploring the dependence of aerodynamic coefficients on yaw angles from ML-based predictions, a rapid update of aerodynamic forces is realized, which can be effectively generalized to trains operating at higher speed levels and subject to harsher crosswinds. The method introduced here paves the way for high-fidelity yet efficient predictions to capture the aerodynamics of engineering structures and facilitates their safety assessment with enormous economic and social significance.

Funder

The NSFC Basic Science Center for "Multiscale Problems in Nonlinear Mechanics"

The Strategic Priority Research Program of the Chinese Academy of Sciences

The Science Challenge Project

Publisher

AIP Publishing

Reference73 articles.

1. The flow around high speed trains;J. Wind. Eng. Ind. Aerodyn.,2010

2. Machine learning for data-driven discovery in solid Earth geoscience;Science,2019

3. CEN, “ Railway applications – Aerodynamics – Part 6: Requirements and test procedures for cross wind assessment,” Report No. EN 14067-6, 2018.

4. Wind tunnel tests on train scale models to investigate the effect of infrastructure scenario;J. Wind. Eng. Ind. Aerodyn.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3