Improved dynamic characteristics of oxide electrolyte-gated transistor for time-delayed reservoir computing

Author:

Fang Renrui12ORCID,Li Xufan12ORCID,Ren Kuan13ORCID,Zhang Woyu12,Xu Han1,Wang Lingfei12ORCID,Shang Dashan12ORCID

Affiliation:

1. Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences 1 , Beijing 100029, China

2. University of Chinese Academy of Sciences 2 , Beijing 101408, China

3. Department of Electrical and Electronic Engineering, University of Hong Kong 3 , Pok Fu Lam Road, Hong Kong 999077, China

Abstract

Time-delayed reservoir computing (RC) equipped with prominent superiorities such as easy training and friendly hardware implementation is identified as a high-efficient answer to complex temporal tasks, and thereby draws increasing attention. Oxygen ion-based oxide electrolyte-gated transistor (Ox-EGT) with rich ion dynamic characteristics is deemed as a promising candidate for RC. However, it is still a challenge to produce the required dynamic characteristics for RC implementation. Herein, we develop an Ox-EGT with an oxygen vacancy-electron-coupled electric-double-layer at the electrolyte/channel interface to implement time-delayed RC. Effects of oxygen vacancy concentration on the short-term plasticity are investigated, revealing the optimal concentration range of oxygen vacancies for the dynamic characteristics improvement. The underlying physical mechanism is demonstrated by TCAD simulations. Simulations using the waveform classification and handwritten-digit recognition tasks validate the good information processing ability of the Ox-EGT RC system. These results provide a promising approach to exploit Ox-EGT dynamics for large-scale and energy-efficient neuromorphic computing hardware.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3