Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification

Author:

Cucchi Matteo1ORCID,Gruener Christopher1,Petrauskas Lautaro12ORCID,Steiner Peter3,Tseng Hsin1,Fischer Axel1,Penkovsky Bogdan45ORCID,Matthus Christian2ORCID,Birkholz Peter3ORCID,Kleemann Hans1ORCID,Leo Karl1ORCID

Affiliation:

1. Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany.

2. Chair for Circuit Design and Network Theory (CCN), Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany.

3. Institute for Acoustics and Speech Communication (IAS), Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany.

4. National University of Kyiv-Mohyla Academy, Skovorody Str. 2, 04655 Kyiv, Ukraine.

5. Alysophil SAS, Bio Parc, 850 Boulevard Sebastien Brant, BP 30170 F, 67405, Illkirch CEDEX, France.

Abstract

Early detection of malign patterns in patients’ biological signals can save millions of lives. Despite the steady improvement of artificial intelligence–based techniques, the practical clinical application of these methods is mostly constrained to an offline evaluation of the patients’ data. Previous studies have identified organic electrochemical devices as ideal candidates for biosignal monitoring. However, their use for pattern recognition in real time was never demonstrated. Here, we produce and characterize brain-inspired networks composed of organic electrochemical transistors and use them for time-series predictions and classification tasks using the reservoir computing approach. To show their potential use for biofluid monitoring and biosignal analysis, we classify four classes of arrhythmic heartbeats with an accuracy of 88%. The results of this study introduce a previously unexplored paradigm for biocompatible computational platforms and may enable development of ultralow–power consumption hardware-based artificial neural networks capable of interacting with body fluids and biological tissues.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3