Spiking Reservoir Computing Based on Stochastic Diffusive Memristors

Author:

Ma Zelin123,Ge Jun123ORCID,Pan Shusheng123

Affiliation:

1. Key Lab of Si‐based Information Materials & Devices and Integrated Circuits Design Department of Education of Guangdong Province Guangzhou Higher Education Mega Center Panyu District Guangzhou 510006 China

2. School of Physics and Material Science Guangzhou University Guangzhou Higher Education Mega Center Panyu District Guangzhou 510006 China

3. Research Center for Advanced Information Materials (CAIM) Huangpu Research & Graduate School of Guangzhou University Sino‐Singapore Guangzhou Knowledge City Huangpu District Guangzhou 510555 China

Abstract

AbstractReservoir computing (RC), a type of recurrent neural network, is particularly well‐suited for hardware implementation in edge computing. It is shown that RC hardware based on dynamic memristors potentially offers much lower power consumption and reduced computation times than digital electronics. However, challenges such as stochasticity and read noise in these devices can impair its performance. Furthermore, the external analog‐to‐digital (ADC) readout circuits may require substantial area and energy. In this work, it is experimentally demonstrated that a population of stochastic diffusive Ag:SiOx memristors can effectively construct a spiking reservoir computing system. This system demonstrates remarkable resilience to read noise and delivers exceptional performance across a range of computational tasks, achieving a 98% accuracy in waveform classification and a normalized root mean square error (NRMSE) of 0.154 in time‐series prediction. Further simulations reveal that a certain degree of device stochasticity actually enhances system performance. Without using ADC converters, a hybrid memristor‐CMOS spiking RC system is designed that demonstrates significantly lower power consumption compared to fully digital systems.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3